Different E-box regulatory sequences are functionally distinct when placed within the context of the troponin I enhancer.
نویسندگان
چکیده
Basic helix-loop-helix (bHLH) regulatory proteins are known to bind to a single DNA consensus sequence referred to as an E-box. The E-box is present in the regulatory elements of many developmentally controlled genes, including most muscle-specific genes such as troponin I (TnI). Although the E-box consensus is minimally defined as CANNTG, the adjacent nucleotides of functional E-boxes are variable for genes regulated by the bHLH proteins. In order to examine how E-box regulatory regions containing different internal and flanking nucleotides function when placed within the context of a single regulatory element, the E-box region (14 bp) present within the TnI enhancer was substituted with the corresponding E-box sequences derived from the muscle-specific M-creatine kinase (MCK) and cardiac alpha-actin regulatory elements as well as from the immunoglobulin kappa (Ig kappa) enhancer. Within the TnI enhancer, the E-box sequence derived from cardiac alpha-actin was inactive whereas the corresponding sequence from the MCK right E-box efficiently restored wild-type enhancer activity in muscle cells. Intermediate levels of gene activity were observed for TnI enhancers containing E-boxes derived from the MCK left E-box site or from the Ig kappa E2 E-box. DNA binding studies of MyoD:E12 protein complexes with each substituted TnI enhancer confirmed that DNA binding activity in vitro mimics the relative strength of the enhancers in vivo. These studies demonstrate that the specific nucleotide composition of individual E-boxes, which are contained within the regulatory elements of most if not all muscle-specific genes, contributes to the complex regulatory mechanisms governing bHLH-mediated gene expression.
منابع مشابه
The proneural proteins Atonal and Scute regulate neural target genes through different E-box binding sites.
For a particular functional family of basic helix-loop-helix (bHLH) transcription factors, there is ample evidence that different factors regulate different target genes but little idea of how these different target genes are distinguished. We investigated the contribution of DNA binding site differences to the specificities of two functionally related proneural bHLH transcription factors requi...
متن کاملTwo functionally identical modular enhancers in Drosophila troponin T gene establish the correct protein levels in different muscle types.
The control of muscle-specific expression is one of the principal mechanisms by which diversity is generated among muscle types. In an attempt to elucidate the regulatory mechanisms that control fiber diversity in any given muscle, we have focused our attention on the transcriptional regulation of the Drosophila Troponin T gene. Two, nonredundant, functionally identical, enhancer-like elements ...
متن کاملA muscle-specific enhancer within intron 1 of the human dystrophin gene is functionally dependent on single MEF-1/E box and MEF-2/AT-rich sequence motifs.
In previous studies we have described a 5.0 kb Hin dIII fragment downstream of muscle exon 1 that exhibits properties consistent with a muscle-specific transcriptional enhancer. The goal of this study has been to identify the sequence elements responsible for muscle-specific enhancer activity. Functional studies indicated that this enhancer is active in pre- and post-differentiated H9C2(2-1) my...
متن کاملTranscription of Drosophila troponin I gene is regulated by two conserved, functionally identical, synergistic elements.
The Drosophila wings-up A gene encodes Troponin I. Two regions, located upstream of the transcription initiation site (upstream regulatory element) and in the first intron (intron regulatory element), regulate gene expression in specific developmental and muscle type domains. Based on LacZ reporter expression in transgenic lines, upstream regulatory element and intron regulatory element yield i...
متن کاملGenetic properties and chromatin structure of the yeast gal regulatory element: an enhancer-like sequence.
DNA molecules created by fusing a 365-base-pair segment of yeast DNA encoding the galactose-regulated upstream promoter element (gal) to a set of derivatives that systematically delete sequences upstream from the his3 gene are introduced in single copy back into the yeast genome precisely at the his3 locus and then assayed for transcription. Fusions of the gal regulatory element to his3 derivat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 20 19 شماره
صفحات -
تاریخ انتشار 1992